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J.  Phys. A: Math. Gen. 17 (1984) 939-955. Printed in Great Britain 

Division algebras, (pseudo)orthogonal groups and spinors 

A Sudbery 
Department of Mathematics, University of York, Heslington, York YO1 5DD, UK 

Received 1 September 1983 

Abstract. The groups SO(v-1), SO(v), S O ( v + l ) ,  S O ( v + l , l )  and SO(v+2,2)  ( v =  
1 ,2 ,4 ,8 )  and their spin representations are described in terms of the division algebras R, 
C,  W and 0. 

1. Introduction 

It has become apparent recently that various aspects of supersymmetric field theories 
have a natural expression in terms of the division algebras R, C, W and 0 (the real 
numbers, complex numbers, quaternions and octonions, respectively). Examples 
involving the complex numbers and quaternions are described by Kugo and Townsend 
(1982) and in the references they cite; in addition the octonions have been used to 
describe a spontaneous compactification of supergravity in 11 space-time dimensions 
(Dereli et af 1983) and it seems likely (Duff et a1 1982) that the quaternions can be 
used to describe spontaneous compactification in dimensions d = 7, 8, 9, 10. 

Kugo and Townsend (1982) note that for rigid supersymmetry there is a pattern 
of association between the maximal space-time dimension D of a theory and a division 
algebra, in which [w is associated with D = 3, C with D = 4 and W with D = 6 ,  and they 
speculate that this pattern could be extended to associate the octonions 0 with D = 10. 
They relate this pattern to the sequence of isomorphisms which forms the second 
column of table 1, which they explain in terms of spinors of the various Lorentz groups 
involved. They also give similar explanations of the other two columns of table 1. 

The arguments of Kugo and Townsend really establish homomorphisms, which 
happen to be isomorphisms because the dimensions match. In this paper we will give 
a unified treatment of each of the columns of table 1, which is valid for any normed 

Table 1. Isomorphisms between pseudo-orthogonal groups Spin( s, t )  and groups involving 
a division algebra K. 

~ 

r = O  r = 1  r = 2  

s - r = 1 Spin(3,2) gSp(4, w) 
K = w  
s- r = 2 Spin(2) =SL1( 1, C) Spin(3,l) -SL(2, C) Spin(4,2) =SU(2,2) 
K =C 
s- t = 4 Spin(4) = SL1(l, M) Spin(5,1)-SL(2,H) Spin(6,2) = Sp(4, HI) 

Spin( 1) = SL( 1, R) Spin(2,l) =SL(2, R) 

K = H  x SLl( 1, H) 

0305-4470/84/050939 + 17$02.25 @ 1984 The Institute of Physics 939 
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division algebra K. In particular, our arguments can be applied directly to the case 
of the octonions (K = O), thus establishing a fourth row of the table (printed as table 
2) and verifying the conjecture of Kugo and Townsend. 

The ideas used in this unified treatment derive from an unpublished review by 
Ramond (1976). Ramond deals mainly with finite group elements, which can lead to 
rather cumbersome expressions when octonions are involved. By considering 
infinitesimal transformations, i.e. by working with the Lie algebra rather than the Lie 
group in each case, we can reduce the complications arising from the non-associative 
nature of octonion multiplication, and so most of this paper will be couched in terms 
of Lie algebras rather than Lie groups. 

Table 2. Groups Spin(& t )  involving octonions. 

s- t = 8 Spin(8) = G 2  x SLI(l ,  0)  Spin(9, 1)-SL(2,O) Spin( 10.2) = Sp(4,O) 
M = O  x SL, (1,O) 

Our notation for Lie groups and Lie algebras is as follows. As usual, SO(s, t )  
denotes the pseudo-orthogonal group of a space-time with s space and t time 
dimensions, i.e. the group of ( s  + t )  X ( s  + t )  real matrices R satisfying det R = 1 and 
RTGR = G where G = diag(-1, . . . , -1, +1, .  . . , 1) with s - signs and t + signs. Its 
Lie algebra, consisting of matrices A satisfying ATG + GA = 0, is denoted by so( s, t )  
(the initial s is unnecessary but not incorrect). If t = 0 we write simply SO(s) and 
so(s). The double cover of so(s, t )  is denoted by Spin(s, t ) .  More generally, if V is a 
real vector space with a symmetric bilinear form g, SO(V) denotes the group of 
endomorphisms of V which preserve the form g and so( V) denotes the Lie algebra 
of antisymmetric endomorphisms of V (with respect to g) .  

The pseudo-unitary group SU(s, t )  and Lie algebra su(s, t )  are defined similarly: 
SU(s, t )  is the group of ( s  + t )  X ( s  + t )  complex matrices U satisfying det U = 1 and 
UtGU = G, where Ut is the hermitian conjugate of U, and su(s, t )  is the Lie algebra 
of matrices A satisfying A t G +  GA = 0. 

The name ‘symplectic’ and the symbols Sp and sp have unfortunately become 
associated with two distinct families of groups and algebras. We will therefore change 
the symbol for one of these families and use Sq(n) to denote the group of n X n 
quaternionic matrices R satisfying R t R  = I ,  where Rt  denotes the quaternionic her- 
mitian conjugate, and sq( n) for its Lie algebra, consisting of quaternionic matrices A 
satisfying At = -A. Then Sp(2n, W )  denotes the symplectic group of 2n X 2n matrices 
R with entries in W (= R, C or W),  satisfying RtJH = j and with det R = 1 (if K = R 
or C); sp(2n, 06) denotes its Lie algebra, consisting of matrices satisfying AtJ+JA = 0 
and Tr A = 0 (if K = R or C)  ( J  = (-9 

SL(n, W) denotes the special linear group of n X n matrices over K whose deter- 
minant is 1 (if K = R or C) or has modulus 1 (if K = W); its Lie algebra SI( n, K) consists 
of matrices A whose traces are 0 (if W =R or C )  or have zero real part (if K =W). If 
V is any real vector space, gl( V )  denotes the Lie algebra of all endomorphisms of V 
and SI( V) denotes the subalgebra of traceless elements. 

Sections 4 and 5 contain unified definitions of the antihermitian Lie algebra sa( n, W )  
(incorporating so (n) ,  su(n) and sq(n)) and of sp(n,H) and sI(n,K), which can be 
extended to the octonionic case 06 = 0 if n = 2 or 3. 

,’)). 
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The direct sum symbol 0 denotes a direct sum of vector spaces, not necessarily a 

The dimension of the division algebra K will always be denoted by v. Thus v takes 
direct sum of Lie algebras. I denotes an identity matrix. 

values 1, 2, 4 and 8, corresponding to 56 = R, @, W and 0. 

2. Division algebras and orthogonal groups (s = v and v - 1, 1 = 0) 

We will be concerned on the one hand with space-time of dimension d = s + t, and on 
the other hand with a composition algebra K. In this section we will consider the case 
t = 0 and show how the orthogonal groups SO( v )  and SO( v - 1) can be described in 
terms of the multiplication in the algebra H. 

A composition algebra (over R) is an algebraK which has a non-degenerate quadratic 
form, which we will denote by x-lxI2, satisfying 

IM2= IX121Y12> x, Y € H .  (2.1) 
Such an algebra can always be assumed to have an identity element (Curtis 1963, 
Jacobson 1958) and therefore to have R embedded in it. The quadratic form lxI2 
induces an inner product in H; the subspace orthogonal to R will be denoted by K‘. 
The conjugation which fixes every element of R and multiplies every element of K’ 
by - 1 is denoted by x H 2 ;  it satisfies 

- 
xy = y2 

and 

We write 
xR = 1XI2# 

Re x = $( x + f )  ; (2.4) 

then the inner product is given by 

(x, y)=Re(xy) =Re(Ry). (2.5) 
It satisfies 

(x, yz) = (xf, y). 

Any composition algebra H is alternative, i.e. the associator 

[x, y, zl= X(YZ) - (XY)Z (2.7) 

is an alternating function of x, y, z E H (Curtis 1963, Jacobson 1958). If the quadratic 
form lxI2 is positive definite, it follows immediately from (2.1) that K is a division 
algebra, i.e. 

xy=O + x = O  or y = O .  (2.8) 
By ‘division algebra’ we shall always mean such a positive-definite composition algebra 
(or normed division algebra). Hurwitz’s theorem (Curtis 1963) states that the only 
such algebras are R, @, W and 0. We shall sometimes denote these by H, ( v  = 1 ,2 ,4 ,8 ) ,  
labelling the algebra by its dimension over R. 

From (2.1) it follows that if u € K  has norm 1, both left multiplication and right 
multiplication by U are orthogonal maps of K. We denote these by L, and R,. As 
the first column of table 1 indicates, these maps generate the whole rotation group 
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SO(K) of K, but the details depend on the particular case. They are most simply 
described in terms of the Lie algebra of the group, i.e. the Lie algebra so(K) of 
antisymmetric maps T: K + K. 

A subgroup of the rotation group of K is the automorphism group Aut K; its Lie 
algebra is the algebra Der K of derivations of K, i.e. the set of linear maps D : K + K 
satisfying 

D(XY) = W X ) Y  + X W Y ) .  (2.9) 

(2.10) 

These Lie algebras are 

Der R = Der@ = 0, 

where C(W’) is defined below. 

defined by 

Der W = C(W’) = sq( l ) ,  Der 0 = G2 

It follows from the alternative law that €or any a, b E H the linear map D(a, b )  

m a ,  b)x  = [a ,  b, xl+$Ca, bl, X I  (2.11) 

is a derivation of 06. It is generated by the left and right multiplication maps L d  and 
Rd with d E K’; in fact it is generated by the commutator maps c, = L d  - Rd, for 

D(a,  b )  = t ( [ c a ,  c b l +  C [ a , b ]  ) *  (2.12) 

Such a derivation, and any sum of such derivations, is called an inner derivation. It 
can be shown (Schafer 1966) that every derivation of a composition algebra is inner. 

In general the derivations and the multiplication maps L, and R, give all antisym- 
metric maps of K: 

so(K)=DerK+L(K’)+R(K’)  (2.13) 

where L ( K ‘ )  is the set of all L, with a E 06’ and R(H‘) is the set of all R,. Antisymmetric 
maps of K’ are obtained by restricting the multiplication maps to the commutator 
maps C,: 

(2.14) 

The sums in (2.13) and (2.14) are not necessarily direct sums, but in all cases the Lie 
brackets are given by 

so(K’) = Der K+ C(H’). 

(2.15) 

(DE Der K; a, b~ K’). 

sums (as vector spaces, not as Lie algebras). Thus K = 0 gives 
If K is neither commutative nor associative the sums in (2.13) and (2.14) are direct 

4 8 )  =GGZOQ9’0Q’, (2.16) 

so( 7) = G 2 0  0’. (2.17) 

If K is associative, it follows from (2.11) and the fact that all derivations are inner 
that DerK c L(56’) +R(K‘); also L ( K ’ )  and R(M’) are isomorphic and commuting 
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subalgebras. Thus K = H gives 

so(4) =sq(l)OSq(l), (2.18) 

4 3 )  =sq(l), (2.19) 

and the sum in (2.18) is a direct sum of Lie algebras. 
If in addition K is commutative, then L ( K ' )  = R (K') and C(K') = 0; thus K = C gives 

so(2) = u ( l ) ,  (2.20) 

so( 1) = 0. (2.21) 

3. 2 X 2 matrices: orthogonal and Lorentz groups (s = Y + 1, t = 0 and 1) 

Let H,(W) denote the set of hermitian n x n  matrices with entries in the division 
algebra K, i.e. the set of matrices X satisfying Xt = X where Xt = 8' and the bar 
denotes conjugation in W. Let A,(K) denote the set of antihermitian matrices, defined 
by the condition Xt=-X,  and let L,(K)=A,(K)OH,(K) be the set of all n x n  
matrices. If K is associative A,(K) and L,(K) are Lie algebras with the Lie bracket 
given by the commutator. They each have a centre consisting of multiples of the 
identity matrix; the quotient of the Lie algebra by this centre will be denoted by 
sa( n, K) and sl(n, W )  respectively. These are contained in A,(K) and L,(W) as subalge- 
bras defined by conditions on the trace of the matrices: for K = R and H the centre of 
A,(W) is zero and so sa( n, R) =so( n) and sa( n, H) = sq (n)  coincide with A,@) and 
A,(W), while sa(n, C) = su(n) consists of matrices with zero trace; and the special 
linear algebras SI( n, K) are defined by the condition Tr X = 0 if W = R or C and by the 
condition Re Tr X = 0 if 06 = W. 

In this section we will obtain an alternative definition of sa( n, K) and SI( n, K) which 
can be extended to the case of a non-associative K if n = 2 or 3. 

For n = 2 or 3, and for all n if K is associative, H,(K) forms a Jordan algebra with 
the product given by the anticommutator; i.e. if we define 

x* Y = i ( X Y + Y X )  (3.1) 

x. (X2 * Y) = x2 * (X. Y). (3.2) 

then X. Y is a commutative but non-associative product satisfying 

We will examine the Lie algebra of derivations of this Jordan algebra. If W is associative, 
the derivations are all of the form 

X-ad A(X)  =[A, XI (3.3) 
for some antihermitian matrix A. This is the zero derivation if and only if A = A 1 
where A belongs to the centre of K; thus the derivation algebra of H,(K) is 

Der H,(W) =sa(n ,  K) (3.4) 
if K is associative. 

The matrix identity which makes ad A a derivation of H,(K), namely 

EA, {X, V I =  {[A, XI,  Y) + W ,  [A, Yll, (3.5) 
which is valid for all n X n matrices if K is associative, holds for restricted classes of 
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2 X 2 and 3 X 3 matrices if W is only alternative: in particular, it holds if X and Y are 
hermitian and A is antihermitian (for 2 x 2  matrices) or antihermitian and traceless 
(for 3 X 3 matrices). Thus for any division algebra K, ad A is a derivation of H2(W) 
if A E A2(W). Derivations of K also act as derivations of H 2 ( K )  by acting on the entries 
in the matrices. These are all the derivations of H2(W), so we have 

Der H2(K)  =ad A2(K) +Der W. (3.6) 
We can decompose the space of antihermitian 2 X 2 matrices as 

A2(K) = A;(K)@K’Z 

where A;(K) is the subspace of traceless matrices and K’Z is the subspace of multiples 
of the identity matrix. But for a E K’, ad(aZ) acts on an element of H 2 ( K )  by acting 
as C, on each entry in the matrix; thus ad(K’1) = C(K‘). Also ad A;(K) = A;(K) since 
H2(K)  is an irreducible set. Using (2.14) we now have 

Der H2(W) = A;(K)Oso(K’). (3.7) 

We will use (3.7), in the light of (3.4), to define the Lie algebra sa(2, W )  for any 
division algebra M. If 06 is associative the Lie bracket is given by the matrix commutator; 
this is a consequence of the Jacobi identity for matrices. Like ( 3 . 3 ,  this can be used 
also for matrices with entries in a composition algebra, but now an extra term must 
be added: 

(3.8) [A, [B, xll-[B, [A, Xll=[[A, BI, X l + E ( A ,  B ) X  
where E(A,  B )  E so(K’) is given by 

(3.9) 

This holds if A and B are antihermitian and traceless and X is hermitian. Thus we have 

sa(2, W) = A;(K)@so(K’) (3.10) 

in which so(K’) is a subalgebra; the Lie bracket of T E so(W’) and a matrix A E A;(K) 
is given by the action of T on the entries in A; and the Lie bracket between two 
matrices in A;(K) is 

(3.11) 

We can give another characterisation of Der H,(K) by describing the Jordan algebra 

[A, B ]  = (AB - BA - u Z ) @  (C, + E(A, B ) )  

where U = $Tr(AB - BA). 

structure of H2(W) more explicitly. Let 

(3.12) 

and let V be the subspace of H2(M) spanned by P and the S ( x ) ,  with inner product 

g(aP+S(x) ,PP+S(y) )=  a P + b ,  Y >  (3.13) 

Then H,(K) = R I @  V, Z acts as an identity in the Jordan algebra, and the Jordan 
product of two elements of V is 

U ’  w = g ( v ,  w)Z. (3.14) 
Thus as a Jordan algebra H2(K) is isomorphic to the Jordan algebra J (  V) defined on 

( a ,  P E R; x, Y E K). 
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the vector space RO V by the anticommutator in the Clifford algebra of V. It is easy 
to see that the set of derivations of this Jordan algebra is just the set of antisymmetric 
linear maps of V: 

Der H2(W) =so( V). (3.15) 

From (3.4) and (3.15) we have 

sa( 2, W ”) = so( Y + 1 ) (3.16) 

which incorporates the isomorphisms 

su( 2) = so( 3), Sq(  2) = SO( 5 )  (3.17) 

and the identification of sa(2,O) as so(9). 
The structure algebra (or Lie multiplication algebra) of a Jordan algebra 9 is the 

Lie subalgebra of gI(3) generated by the Jordan multiplication maps Lx, i.e. Lx(  Y )  = 
X. Y. It follows from the Jordan identity (3.2) that [ L x , L y ]  is a derivation of J. 
Conversely, if 5 is semisimple every derivation is a sum of derivations of this form 
(Schafer 1966 p 22). If J has an identity no non-zero Lx is a derivation; hence the 
structure algebra is 

Str 9 =Der  J@L(J).  (3.18) 

The multiples of I in L(J) will belong to the centre of S t rJ ;  we will factor out this 
subspace to obtain a reduced structure algebra Str’ 9. In the case J = H2(W) we can 
use (3.7) to obtain the vector space structure 

Str’ H2(W) =HL(K)@A;(K)@so(K’) =LL;(W)@so(W’) (3.19) 

where H ;  ( W )  and L;(W) denote the traceless subspaces of H2(K) and L2(W). If K is 
associative the subalgebra so(K’) can be identified with a set of multiples of the identity 
matrix; the matrix identities (3.5) and 

(3.20) 
together with the Jacobi identity, then show that the Lie bracket in Str‘ H,(W) is given 
by the matrix commutator. Thus we have a Lie algebra isomorphism 

Str’ H2(K) zsI(2,  W) (3.21) 
if W is associative. 

We now proceed as we did for sa(2, W) and use (3.21) to define sI(2, W )  for any 
composition algebra W. Like the Jacobi identity, (3.20) can be modified so as to hold 
for matrices over any composition algebra W: 

(3.22) 

where E(X, Y) is defined as in (3.9). This holds if X, Y and Z are hermitian. Thus 
we have 

sl(2, W) = L;(W)Oso(W’), (3.23) 
the Lie brackets being the same as in sa(2, W)-in particular, the Lie bracket between 
any two matrices in Li(K) is still given by (3.11). 

The action on H2(K) of L;(K), regarded as a subspace of the structure algebra 
Str’ H2(R)7 can be summarised as 

X C ,  MX + X M +  (X E H 2 W ) ,  ME L;(w). (3.24) 
If W is commutative, this map is an infinitesimal generator of the group of transforma- 

{X, { y, a1 - { Y{X, a1 = [[X, YI, ZI, 

{X, { y, ZI) - { y7 {X7 a1 = [[X, YI, ZI + E ( X ,  Y ) Z  
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tions X- UXUt, with det U = 1 corresponding to Tr M = 0. These preserve det X, 
which is a Lorentzian quadratic form on H2(K) .  For a general K, it follows from the 
composition (3.19) of Str’ H2(H), together with the form (3.14) for the Jordan product 
in H2(B6), that Str’ H 2 ( K )  is the Lie algebra of the Lorentz group of H 2 ( K ) ,  regarded 
as a Minkowski space-time with R I  as a timelike subspace and the space V as the 
orthogonal spacelike subspace. The metric g of H 2 ( K )  is then given by 

g(X,  X) = det X = aP - where X = (a ”>. 
f P  

(3.25) 

Thus we have an isomorphism 

SI( 2, K &, ) = so( v + 1 , l )  (3.26) 

which incorporates the second column of table 1 and the identification s1(2,0)= 
so(9, 1).  This isomorphism can also be understood by regarding sI(2, W) as the Lie 
algebra of the group of projective transformations of the projective line MP’, defined 
as the set of equivalence classes of K2 under the equivalence relation 

x - y  -a xlx;’=yly;’ or x 2 = y 2 = 0 .  (3.27) 

Thus HP’ is homeomorphic to H compactified by the addition of a point at infinity. 
If we normalise x and y by the condition 

xtx = yty = 1 (3.28) 

then (3.27) becomes 

x - y e u +  = yyt. (3.29) 

Thus points of KP’ correspond to certain 2 x 2 hermitian matrices X = xxt-specifically, 
the idempotent matrices of rank 1. (The map # taking x satisfying (3.28), i.e. lying 
on the sphere S ” ,  to its equivalence class in KP’  is the Hopf map #: S2”-’ + S”,  which 
has fibre S’-’ . )  Now an infinitesimal transformation Gx=Mx, where M is a 2 x 2  
matrix, corresponds in the representation (3.29) to an infinitesimal transformation of 
KP’  given by S X = M X + X M t .  Comparing with (3.24) suggests that the Lie algebra 
of infinitesimal projective transformations should be sI(2, K), and this is confirmed by 
a more careful treatment in which projective transformations of KP’ are defined by 
embedding HP’ in a projective plane (see Springer (1960) for the octonionic case). 
On the other hand, a finite projective transformation x-Ux corresponds, in the 
representation (3.27), to a Mobius transformation 

x- (ax + b)( cx + d)- ’  (3.30) 

of WU{CO}. These are conformal transformations of K, and the conformal group of 
K = R ”  is isomorphic (Bander and Itzykson 1966) to the Lorentz group O(v+ 1 , l ) .  

4. 4 X 4 matrices: de Sitter groups (s = Y + 2, I = 2) 

In 0 3 we considered two Lie algebras Der J and Str J associated with a Jordan algebra 
J in the case J = H2(K) .  A third Lie algebra associated with a Jordan algebra was 
constructed by Kantor (1973) and Koecher (1967); we will call it Con J since it is the 
Lie algebra of a group of conformal transformations of J. 
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For Koecher’s construction the Jordan algebra J must have an identity. Its structure 
algebra is then given by (3.18), and has an involutive automorphism T +  T* which is 
the identity on Der J  and multiplies every element of R(J )  by -1. Now C o n J  is 
defined by 

Con J = Str JOJ’ 
with Str J a subalgebra and the other Lie brackets given by 

for T E S t r J  and x , y ~ J .  
For J=H2(K) we have, using (3.16) and (2.13), 

Con H’(K) = [ ~ ~ ( [ t b ) ] ’ ~  L;(w) o RO SO(K’). (4.4) 

An element of [H2(K)]20L;(W)OR can be represented as a 4 X4 matrix 

Y - M + - A  
P = (  M + A I  

(4.5) 

with M E  L;(K), X ,  Y E  H2(W) and A ER. This matrix satisfies 

PJ+JP+=O, Tr P=O, (4.6) 

where J = ( ’ I  
the form (4.5). We will denote the space of such matrices by Spi(H), so that 

;). Conversely, any matrix satisfying these conditions can be put in 

Con H 2 ( K )  zSpk(W)Oso(K’). (4.7) 

In the description of Str H2(K) as L;(K)Oso(K’)OR the involution T-,  T*  is the 
map M -, -M on Li(K), the identity on so(K), and -1 on R. It follows from this and 
the Lie brackets (4 .1H4.3)  that the structure of Con H2(W) is given by the statements 
that so(W’) is a subalgebra which acts on Spi(W) elementwise, and that the Lie bracket 
of two matrices P, Q E Spi(K) is 

[P, Q l = ( P Q - Q P - a I ) O ( C , + t E ( P ,  0))  (4.8) 
where a =$Tr(PQ- QP) and E ( P ,  Q) E so(K’) is still given by (3.20). We will denote 
this Lie algebra by sp(4, W).  

On the other hand, ConH2(H) can be identified as a pseudo-orthogonal, or 
conformal, Lie algebra. We know that H 2 ( K v )  carries a Lorentz metric of signature 
( v + l ,  l ) ,  and that Str H2(WV) is the Lie algebra of its Lorentz group, together with 
dilations. The automorphism A -, A* corresponds to time reversal in this Lorentz 
group, i.e. A* = TAT-’ where T acts on H,(K) by 

.(p ; ) = ( ; p  -a “ ) .  (4.9) 

Let T ( X )  = ( X ,  0) and L ( X )  = (0, T ( X ) )  E Con H2(W); then the Lie brackets (4.1)-(4.3) 
can be written as 

[ S ,  7(X)1= T ( S ( X ) ) ,  

[ T ( X ) ,  4 Y ) I = - g ( X ,  Y ) I - R ( X ,  Y ) ,  

[ S ,  L(x)I= L ( S ( X ) ) ,  
(4.10) 
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where X, Y E  H2(K) ,  S E  Str H2(K) ,  g denotes the Lorentz inner product in H 2 ( K ) ,  
and R(X,  Y) E Str H 2 ( K )  is defined by 

(4.11) 

The Lie brackets (4.10) define the Lie algebra of the conformal group of H 2 ( K v ) ,  
. (X)  being a generator of translations, L ( X )  a generator of conformal transformations 
and I the generator of dilations. Since the conformal group in a space-time of dimension 
s + tis isomorphic to the Lorentz group SO( s + 1,  t + l ) ,  we now have an isomorphism 

(4.12) 

In the case K = C the algebra sp(4, C )  is isomorphic to the Lie algebra of the 
pseudo-unitary group SU(2,2), since there is a unitary equivalence between the 
antisymmetric matrix J and the matrix iG, where G = (A -I). Thus in this case the 
isomorphism (4.10) can be written as 

S0(4,2) = S U ( 2 , 2 ) .  (4.13) 

R ( X ,  Y ) Z  = g (  Y, Z ) X  - g ( X ,  Z )  Y. 

sp(4, K) E5 so( Y + 2,2).  

0 

The results of this and § 3 are summarised in table 3. 

5. 3 x 3  matrices: exceptional groups 

Although it is not strictly relevant to our subject of pseudo-orthogonal groups and 
spinors, it is interesting to see how the constructions of 99 3 and 4 can be applied to 
3 X 3 matrices. The result is a table of Lie algebras which includes all the exceptional 
algebras in the Cartan-Killing classification. 

The Lie algebras we consider are the derivation, structure and conformal Lie 
algebras of the Jordan algebras H3(K) .  The derivation algebra is determined by the 
matrix identity (3.5) which shows that the map X-[A, XI is a derivation of H 3 ( K )  
if A is antihermitian and traceiess. Together with derivations of K acting elementwise 
on the matrices, these are all the derivations of H3(K) ,  so 

Der H 3 ( K )  =ad A;(K)ODer K. (5.1) 
This is isomorphic to sa(3,K) if K is associative, and in general we use it to define 
sa(3,K): 

sa(3,K)=A;(K)ODerK.  (5 .2 )  

The Lie brackets are determined by (3.8),  which continues to hold for 3 X 3 matrices; 
this gives 

[A, B ] = ( A B - B A - u ~ ) O ( C , + E ( A , B ) )  

where U =iTr(AB-BA). This can be written in terms of the derivations D(x, y)  
defined by (2.10): 

[A, B ] = ( A B - B A - a I ) O D ( A ,  B )  
where 

D(A,  B )  = E  D(uij, bji). 
i j  

(5.3) 

(5.4) 

When K is the octonions, this algebra sa(3,O) is the compact form of the exceptional 
Lie algebra F4. 
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The structure algebra of H3(K) is obtained from (3.18), as for H2(M); factoring 
out the one-dimensional centre, we obtain 

Str’ H 3 ( K )  = L;(H)ODer K =s1(3, W )  ( 5 . 5 )  

(this being a definition of sI(3, W) for non-associative K). Equation (3.22) continues 
to hold for 3 x 3 matrices; hence the Lie brackets in sI(3, W) are also given by (5.3) 
and (5.4). When K = 0, this Lie algebra is a non-compact form of the exceptional 
algebra E6, the maximal compact subalgebra being F,. 

sI(3,K) is the Lie algebra of the projective group of the projective plane KP2,  
which is embedded in H3(K) as the set of idempotents with trace 1;  sI(3, K) acts on 
this plane as in (3.24). When W = 0, this is a non-Desarguian projective plane (Springer 
1960). 

The Kantor-Koecher construction leads to a Lie algebra 

Con H 3 ( K )  = Spk(K)O Der K = sp(6, K) 

with Lie brackets given by 

[P, Q ] = ( P Q - Q P - a 1 ) 0 4 D ( P ,  0)  

(5.6) 

(5.7) 

where a =kTr(PQ- QP) and D(P, Q) is still given by (5.4) (referring now to 6 x 6  
matrices). When K = C this Lie algebra is isomorphic to su(3,3);  when W = 0 it is a 
non-compact form of E,, the maximal compact subalgebra being E 6 0  so(2). 

The algebras constructed in this section are shown in table 4. They can be obtained 
by a unified construction due to Tits (1966; see Schafer 1966) based on the vector space 

L3(K1, K,) =Der  H3(Kl )0Der  K 2 0 H ; ( K , ) 0 W ;  (5.8) 
in which K1 and W2 are composition algebras. Taking W 1  and W2 to be division algebras 
gives the ‘magic square’ (Freudenthall963) of compact Lie algebras. Our non-compact 
forms can be obtained by taking K1 to be a division algebra and K, to be R or ‘split’ 
(pseudo-orthogonal) forms of Q= and W. A fourth row can be obtained by taking K2 
to be the split octonions; this is also shown in table 4. 

A construction like Tits’s can also be applied to the Jordan algebras H2(W), yielding 
a magic square of orthogonal algebras. The Lie algebra in this construction has a form 
similar to (5.8), namely 

L2(K1,K2) =Der H2(W1)O~o(W;)OH;(K1)OK;. (5.9) 
The results of § 3 then give 

L2(K1, K,) =so(K1OW*). (5.10) 
The pseudo-orthogonal algebras constructed in § 3 belong to a non-compact version 
of this square, giving another row to add to table 3. The full square is shown in 
table 5.  

6. Spinors 

In §§ 3 and 4 we described various pseudo-orthogonal groups SO(s, t )  in terms of 
matrices with entries in a division algebra. These matrices did not necessarily form a 
representation of the group. In this section we will see how the associated column 
vectors can be regarded as spinors, carrying a representation of the group and (in 
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Table 5.  The non-compact magic square L,(M,, K2). 

95 1 

c w 0 

some cases) a representation of the Clifford algebra. Since the division algebras are 
real algebras, these are Majorana spinors. We will construct the Dirac y-matrices in 
each case, using the following notation: if V is the pseudo-orthogonal space being 
considered, with metric g, and S is the spinor space, then for each U E  V we have a 
linear map y( U )  : S + S. These y( v )  are the Dirac matrices; they satisfy 

{Y(V), y(w))=2g(v, w ) .  (6.1) 

For the Euclidean spaces it is sometimes necessary to take g to be negative definite 
to get real Dirac matrices. In half of the cases we will note that there is ‘no real 
representation of the Clifford algebra’. In such cases it would be possible to construct 
a complex representation of the Clifford algebra for H = R, Q= and W, but this does not 
fit naturally into our approach; and there is no representation at all for H = 0. 

As before, Y denotes the dimension of the division algebra H, with possible values 
1, 2, 4 and 8. 

SO(v-1) 

This is the orthogonal group of the Euclidean space V = H’. For spinor space we take 
S = 06; the Clifford algebra is represented by the operations of multiplication in W, i.e. 

Y(a) =La ( a  E Wl). (6.2) 

La& + L L a  = -2( U ,  b )  (6.3) 

Equation (6.1) becomes 

which followsfrom the definition (2.5) of the inner product and the alternative law (2.7). 
From this representation of the Clifford algebra we obtain a spin representation 

of the group. As usual, it is easiest to describe the representation of the Lie algebra: 
the so(H’) element O(a, b )  defined by 

Q(u, b ) c = ( b ,  c ) u - ( u ,  c ) b  (a, b, c E W‘) (6.4) 
(the generator of rotations in the plane of a and b )  is represented by 

The only interesting cases are v = 4 and 8, M = W and 0. In the first case we have 
a real four-dimensional representation of 4 3 ) ;  by taking one of the quaternion units 
as the imaginary unit we can identify M = C2 and this representation becomes the usual 
complex two-dimensional spin representation. In the second case we have a real 
eight-dimensional representation of so( 7),  which is the spin representation. 
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SO( v) 

In this case the Euclidean space V is 06. K also carries spinor representations of so( v ) ,  
but there is no real representation of the Clifford algebra. 

For each x, y E K, let Q( a, y )  E s o ( W )  be the generator of rotations in the plane of 
x and y ,  as in (6.4). Define Q ( x ,  y)' and Q(x, Y ) ~  E so(K) by 

Then T H  T' and T H  T b  are representations of so(W) acting on K which are not 
equivalent to the self-representation. They satisfy the triality equations 

T(xy )  = (T'x)y + x ( T b y ) ,  (6.8) 

T ' ( ~ Y )  = ( Tx) y + x( Thy), (6.9) 

Tb(xy)  = ( T ' x ) y + x ( T y ) ,  (6.10) 

where the conjugate of any linear map F:K-K is defined by 
- 

P ( x )  = F ( f ) .  (6.11) 

Note that for T E so(K') w e  have 
- 

T =  T and T'= Tb. (6.12) 

If K is associative so(K) is spanned by the maps of left and right multiplication by 
elements of K', and the representations # and b are given by 

(6.13) 

Lb, = (1 - ~ v ) R , ,  Rb, =$vR,  
The case K =R is trivial. For K = C  the representations T' and T b  coincide: if T 

is multiplication by i, T' and T b  are multiplication by li. The corresponding double- 
valued representation of SO(2) represents each rotation by a rotation through half 
the angle. 

For K = W, T' and T b  are projections onto the two commuting subalgebras in the 
decomposition (2.18). The corresponding double-valued representations of SO(4) are 
given by: 

if 

R ( x )  = uzu ( R  E S0(4) ,  x E W, U ,  U E S 3 )  
then (6.14) 

R'z = i u z ,  Rbz = fzv .  

These are well defined as representations of Spin(4). 

as well as left and right multiplication maps, and we have 
In the non-associative case K = 0 the Lie algebra so(K) is spanned by derivations 

D' = ~b = D ( D E  Der O), (6.15) 

Lt = La + R,, Rf: = -R, 
( U  E 0'). (6.16) 

L:: = -La, R: = L, +R,  
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For future reference we note that it follows (using (2.11)) that 

E ( a ,  b)' = E ( a ,  b )  - R[,.b], E ( a ,  b ) b = E ( a ,  b)+L[, , , , .  (6.17) 

Equations (6.15) and (6.16) define the triality representations (Ramond 1976, 
Schafer 1966) of SO(8). The corresponding representations of SO(8) are again double 
valued. Further details of triality are given by van der Blij and Springer (1960) and 
Porteous (1982). 

S O ( v + l )  

In 0 3 the Lie algebra so( v + 1) was realised by means of 2 X 2 traceless antihermitian 
matrices over K together with antisymmetric maps of K': 

so( v +  1) =A;(M)Oso(K') (6.18) 

(see (3.7) and (3.15)). We take S to be the space of 2 X 1 column vectors with entries 
in ad, and define an action p of A6(K)Oso(K') on S by 

A E A $ ( K ) J  p(A)r = Ax (matrix multiplication), (6.19) 

T E S O ( K ' ) * p ( T ) x =  T'x (componentwise action). (6.20) 

Then from (6.9) and (6.12) we have 

M T ) ,  p(A)I=p(TA). (6.21) 

Moreover there is a matrix identity 

A(Bx) - B(Ax) = (AB - BA)x + E(A, B ) x  (6.22) 

where E(A, B )  E so(W') is defined in (3.9), which is valid for any traceless 2 X 2 matrices 
A, B with entries in an alternative algebra, and from which it follows that 

(6.23) 

where a = fTr(AB - BA). (The proof is different for different K; for R and C we have 
C, = E(A, a) =0,  for H we have E(A, B )  = O  and C: = L,, and for 0 we have 
Cz=L,+2R, and E(A,B)'=E(A,B)-2RO from (6.16)-(6.17).) Thus 

[p(A), p m 1 =  p([A, BI) (6.24) 

where the bracket on the right-hand side is the sa(2, K) bracket defined by (3.11); so 
p is a representation of the Lie algebra sa(2, K) =so( v + 1). 

S also carries a real representation of the Clifford algebra for the positive definite 
metric, given by the traceless hermitian matrices which defined the orthogonal space 
in the first place. This is a representation by virtue of the identity 

(6.25) 

[ p (  A), p(B)] = (AB .- BA)x - ax + (C, + E (A, B)')x 

X( Yr) + Y ( X x )  = ( X U  + Y X ) x  

which holds for hermitian X and Y over any composition algebra. 
For M = [w the representation p gives the half-angle representation of SO(2); for 

M = 02 it gives the spin-f representation of SO(3). For K = W we obtain an eight- 
dimensional real representation of SO(5) which, by means of the identification U4 = C2, 
can be identified with the four-dimensional complex (spin) representation. Finally, 
K = 0 gives the 16-dimensional spin representation of SO(9). 
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S O ( v + l ,  1) 

Since the identity (6.22) holds for all traceless matrices, the considerations on sa(2, K) = 
so( v + 1) can be extended to sI(2, K) =so( v + 1 , l )  to give a double-valued representa- 
tion on the space K2. For K = R, C and W these are the familiar representations implied 
by the isomorphisms in the fourth row of table 2; for K = 0 we obtain an identification 
of S O ( 9 , l )  spinors as pairs of octonions. There is no real representation of the Clifford 
algebra. 

SO( v + 2 , 2 )  

In § 4 the Lie algebra so( v + 2,2)  was realised by means of certain 4 x 4 matrices over 
K, together with antisymmetric maps of K’: 

(6.26) 

(see (4.7) and (4.12))- We take S to  be the space of 4X 1 column vectors with entries 
in K, and define an action (T of sp(4,W) by letting Spk(K) act by matrix multiplication 
and so(K’) componentwise in the ?4 representation, as in (6.19) and (6.20). As for 
so( v + l ) ,  this gives the correct commutators between Spi(K) and so(W’) for a rep- 
resentation of sp(4, K). Also, from (6.22) and (6.25) and their consequences 

A ( X x )  + X ( A t x )  = ( A X + X A t ) x ,  (6.27) 

so( v + 2,2)  = sp(4, W) = Sp~(K)Oso(K’)  

X (  Yx)  = ( X Y ) x + i E ( X ,  Y ) x ,  (6.28) 

which hold for 2 X 2 matrices if A is traceless and X and Y are hermitian, we find that 

M (  NU) - N (  MU) = ( M N  - N M )  U + +E ( M ,  N )  U (6.29) 

for M, N E  Sp:(K) and U E K4. It follows as for so( v +  1) that (T is a representation of 

There is no representation of the Clifford algebra in general, but this space does 
carry a representation of the Clifford algebra of so (v+  1 , l ) .  The Minkowski space 
RVc2 is realised as H2(K), with metric g determined by 

(6.30) 

sp(4, K). 

g(X ,  X )  = det X ;  

the Dirac matrices are then given as 4 x 4  matrices by 

v ( l ) = ( l  0 -1 O ) .  

(6.31) 

These satisfy 

{ y ( X ) ,  Y (  Y ) }  = 2g(X,  Y )  

and if they act on K4 by matrix multiplication, (6.25) guarantees that they form a 
representation of the Clifford algebra. 

For K = @  this gives the usual Dirac spinors and (6.31) is a standard representation 
of the y-matrices. The representation of S0 (4 ,2 )  is the twistor representation of the 
conformal group of Minkowski space. For K = W we obtain an analogous construction 



Division algebras and ( pseudo) orthogonal groups 955 

of eight-component Dirac spinors for SO(5, l )  (having made the usual identification 
W = C2). D6 = 0 gives a set of real Dirac matrices for SO(9,l)  and a real 32-dimensional 
representation of SO( 10,2) .  
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